1. The parametric equations of a curve are

$$x = 2t + \sin 2t$$
, $y = \ln(1 - \cos 2t)$.

Show that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \csc 2t$$
.

[5]

	dx	~	21-24-	1.002	t
(BI)	dt =	2 +	20034 -	4 005	C

	dy	dt		<u></u>		
	dx =	dx	=	402	_ = 4	zcs
(NI)		dt				

		25intwot
***************************************	(MI)	
		=
		5,b2t

0-	36
(AI)	= coseezt
,	

2.	A curve has equation $y=\frac{e^{3x}}{\tan\frac{1}{2}x}$. Find the $x-$ coordinates of the stationary points of the curve in the interval $0 < x < \pi$. Give your answers correct to 3 decimal places. [6]
	dy 3e3x tanix - e. i seeix
mi	$\int AX = \frac{1}{(\tan t x)^2}$
	3 tanz x - = (1+ tanz x)=0
mi	$6t - 1 - t^2 = 0$ $t^2 - 6t + 1 = 0$
MI	t - 6t + (-6) $t - 6 \pm \sqrt{32} = 3 \pm 2\sqrt{2}$
	2
(A1)	$\chi = 0.340$
(AI)	

3. The diagram shows the curve $(x^2+y^2)^2=2(x^2-y^2)$ and one of its maximum points M. Find the coordinates of M. [7]

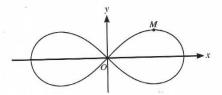


Figure 1: Curve

$a(x^2+y^2)(2x+2y\frac{dy}{dx})=2(2x-2y\frac{dy}{dx})$
$4 \times (x^2 + y^2) = 4 \times$ $\Rightarrow x^2 + y^2 = 1$
$\Rightarrow x^2 + y^2 = 1$
$\Rightarrow \chi^2 - y^2 = \frac{1}{2}$
<u> </u>
$\Rightarrow \chi^2 = \frac{3}{4} \qquad \chi = \frac{\sqrt{3}}{2}$
$y^2 = 4 \qquad y = \frac{1}{2}$
$\left(\begin{array}{c} \sqrt{3} \\ 2 \end{array}, \begin{array}{c} 1 \end{array} \right)$

- 4. The equation of a curve is $2x^4 + xy^3 + y^4 = 10$.
 - (i) Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{8x^3 + y^3}{3xy^2 + 4y^3}.$

[4]

8x3+	y3+ x	- 3 y di	X + 4	y dx	こし
d					
7	X = -	3242-	+4y3		

.....

(ii) Hence show that there are two points on the curve at which the tangent is parallel to the x-axis and find the coordinates of these points. [4]

y=-2x /

 $2x^{4} - 8x^{4} + 16x^{4} = 10$

3C = 1

(1,-2),(-1,2)